Application Fields of 316L Stainless Steel Powder

Application Fields of 316L Stainless Steel Powder

316L stainless steel powder is an important metal powder, mainly used in various fields due to its excellent corrosion resistance and processing performance. The following will provide a detailed introduction to applying 316L stainless steel powder in different fields.

1. Aerospace field

In aerospace, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components. Due to the excellent high-temperature and oxidation resistance of 316L stainless steel powder, it can maintain stable performance in harsh environments such as high temperature, high pressure, and high speed, ensuring the safe and reliable operation of the aircraft. For example, in the manufacturing of jet engines, 316L stainless steel powder is used to manufacture high-temperature components such as turbine blades, combustion chambers, etc., which can withstand temperatures of up to 600 and high-pressure airflow.

In addition, 316L stainless steel powder is also widely used in manufacturing high-strength structural components in aerospace vehicles, such as beams, frames, ribs, etc. Due to its excellent processing and welding performance, it can be easily processed into various complex structural components, ensuring their dimensional accuracy and stability.

2. Petrochemical industry

In the petrochemical industry, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant equipment and pipelines. Due to 316L excellent corrosion resistance, it can effectively resist the erosion of various chemical substances and make sure the long-term stable operation of the equipment. For example, in petrochemical equipment manufacturing, 316L stainless steel powder is used to manufacture high-temperature and high-pressure containers and pipelines, which can withstand the corrosion of various chemicals and ensure its sealing and strength.

In addition, 316L stainless steel powder is also widely used in manufacturing catalyst carriers, filters, separators, and other components in the petrochemical production process. Due to 316L excellent corrosion resistance and high-temperature performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

3.Medical field

In the medical field, 316L stainless steel powder is widely used to manufacture high-standard implants and medical devices. Due to its non-toxic and harmless effects on the human body, as well as its good biocompatibility, it can ensure the long-term stability and safety of the product and is widely used in manufacturing human implants and medical devices. For example, in manufacturing artificial joints, prostheses, and other implants, 316L stainless steel powder is used to manufacture support structures and connectors, ensuring their strength and stability, as well as good wear and corrosion resistance.

In addition, 316L stainless steel powder is also widely used in the medical field to manufacture high-standard surgical instruments, medical devices, etc. Due to its good processing and welding performance, various complex-shaped medical devices can be manufactured, improving the reliability and safety of medical equipment.

4. Industrial sector

In the industrial field, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components and equipment. For example, it can be used to manufacture high-quality mechanical parts such as springs, bearings, bolts, chemical equipment, and ship components. Due to its excellent corrosion resistance and antioxidant performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

In addition, in the industrial field, 316L stainless steel powder is also widely used in the power and electronics industries. For example, in manufacturing batteries and electronic components, 316L stainless steel powder is used to manufacture components such as shells, brackets, and terminals, which can improve quality and safety of the products.

In summary, 316L stainless steel powder has many applications in different fields.

About KMPASS

KMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for 316L powder, please send an email to: sales2@nanotrun.com

Application Fields of Nickel Based Alloys

Nickel Based Alloys: Applications

Nickel-based alloy Based on nickel, it is made up of different alloying materials. It has excellent mechanical properties, high-temperature resistance and corrosion resistance. It's used in aviation and aerospace as well as petrochemicals and other industries. This article will give a detailed description of the Applications of nickel-based alloys in different fields such as aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is a major application area for Nickel-based alloys These are the main components used to make high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

The main equipment used in aviation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and discs.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials that have excellent corrosion resistance and high temperature resistance. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in petrochemicals. Nickel-based alloys are mainly used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes in the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

The core equipment of the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent high-temperature properties, corrosion resistance and mechanical characteristics. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, as well as mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are used primarily to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

In the manufacture of gas turbines such as blades or key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial Joint

Artificial joints can be:

* Medical devices which replace diseased joints.

* Requiring materials that are highly corrosion resistant

* Biocompatibility.

Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in aerospace and petrochemicals as well as power energy and biomedicine. In the future, with the development of technology, it is expected that nickel-based materials will be more widely used, and they will contribute more to industrial and technological development.

KMPASS:

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials, are leading the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-efficient and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made of fly ash, cement, slags, river sand and other raw materials.

It is characterized by its high strength and light weight. It also has heat insulation and sound insulation.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, allowing the building to be lighter and more resistant to earthquakes.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of buildings.

Construction of CLC block can be convenient and quick, which will greatly reduce construction time.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a better thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load-bearing and service life.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, such as a simple production process, low costs, and a good performance for environmental protection.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote the green construction of the building industry.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. Its molecular weight, 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). The sulfur ion forms a regular tetrahedron in which the zinc ion sits in the middle. In contrast, a sulfur ion occupies the center of the tetrahedron. This structure can also be described as a face centered cubic crystal system where zinc and sulfur ions are located at the vertex and center of the lattice.

Zinc Sulfide (also known as Zinc Sulfide) is an insoluble, white solid. It is not soluble in water. However, it is soluble with bases and acids. Zinc sulfide's density is 3.98 g/cc, with a melting and boiling temperature of 1 350 degrees C. The light transmission range of zinc sulfide is between 200 and 400 nm. Zinc sulfide has relatively stable properties, but under certain circumstances it can react. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc hydroxide can be formed by the reaction of zinc sulfide with hydroxide.

Application Of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique crystal structure and chemical and physical characteristics of zinc sulfide have made it a widely used compound in many fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has a variety of uses, including in the production of fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors, which can then emit light to display an image when they are excited by external lights. In the manufacture of fluorescent lamps, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. For instance, zinc is used in the manufacture of anti-malarials, like zincsulfate or zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. Catalyst Manufacturing

Zinc sulfur acts as a catalyst for the creation of other compounds like zinc acetates, acetones, and methylisobutylketone. Zinc sulfur is a highly active and selective catalyst that can be used in the manufacturing process.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salts in a liquid solution.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur in the water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration : The reaction is filtered in order to obtain a filtrate that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitate of zinc sulfide is cleaned with alcohol in order to remove impurities.

After washing the zinc sulfide it is dried and precipitated to get zinc sulfide.

Chemical precipitation is easy to do, inexpensive, and produces a product of high purity. The disadvantages of this method are that it requires many detergents and precipitating agents. Also, the waste liquid generated must be treated further to reduce its environmental impact.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid phase reactions. A solid reaction between zinc oxides and sulfur-containing elements was used to produce zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment - The raw materials undergo a pretreatment at high temperature to ensure that all components react and generate zinc and sulfur vapour.

Synthesis: Zinc and sulfur are combined at high temperature to form zinc sulfide.

The zinc sulfide synthetic powder is collected.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high temperatures, and it uses a lot of carbon and sulfur powders, which can be harmful to the environment.


3. Solventothermal Method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in an organic solution under high pressure and temperature. This produces zinc sulfide by hydrothermal reaction.

Preparation Solution: Dissolve an appropriate amount of zinc salt and sulfur in organic solvent.

High temperature and pressure reaction: The above-mentioned solution is placed in the high-temperature reactor and under high-pressure conditions, a hydrothermal process is performed to produce zinc-sulfide.


The generated zinc powder is collected, and treated as required.

The solvothermal technique has the advantage of a high purity product, good crystallinity as well as a relatively straightforward process. Moreover, it is possible to use different organic solvants and reaction conditions in order to control product properties. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental protection and safety. Adopting appropriate environmental protection technologies and measures will help reduce the harm caused to the environment and humans.

Prospect Markets of Zinc Sulfide ()

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. With the development of science, phosphors' application fields are expanding. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Solar cells, the most popular application of photoelectric materials, can convert light into electricity. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in the pharmaceutical industry. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is widely used for optical device manufacture. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities to apply zinc sulfide when manufacturing optical devices.

Price of Zinc Sulfide powder :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with more than 12 year's experience. They provide super-high-quality chemicals, such as silicon powders, graphite particles, zinc sulfide or boron powders.

Contact us today to send an inquiry if you need high-quality zinc sulfur powder.

Structure of Molybdenum Carbide Mo2C

Russian crude oil shipments to Italian and Turkish ports rose to multi-week highs, suggesting that some southern European countries are quietly returning to the Russian oil market.

Specific figures show that Russian crude oil deliveries to Italian refineries rose to their highest level in seven weeks in the week to August 5, while shipments to Turkey reached the highest level in six weeks.

Separately, Spain received its first Urals this week since April, and Greece last week received its first shipments of crude from the Baltic Sea since February.

There are still four months to go before the EU sanctions on Rosneft come into effect. The recent increase in the flow of goods to several European countries has raised doubts about the implementation of the ban.

In addition to some southern European countries began to import Russian oil, Japan also reiterated that it will retain its stake in Russia's "Sakhalin 1" oil and gas project.

Last week, Russian President Putin signed an order banning personnel from "unfriendly" countries and regions, including Japan, from trading shares in Russian strategic projects, energy mining companies and some banks before the end of this year. It also mentioned the oil and gas project including "Sakhalin 1".

Because of the turbulent international situation, the supply and prices of many international bulk Molybdenum Carbide, Molybdenum Carbide Overview, Molybdenum Carbide Applications, Molybdenum Carbide Suppliers, Molybdenum Carbide Price are still very uncertain.

Overview of molybdenum carbide Mo2C powder

The molecular formula of molybdenum carbide is Mo2C, the molecular weight is 203.88, and the carbon content is 5.89%. It is a dark grey metallic powder with a tightly packed hexagonal lattice. The density is 9.18g/cm and the melting point is 2690℃. As a new functional material, it has high melting point and hardness, good thermal and mechanical stability, and good corrosion resistance. It has been widely used for high temperature resistance, wear resistance and chemical corrosion resistance. Place.

Structure of Molybdenum Carbide Mo2C

Metal carbides are generally considered to have interstitial alloy structures. In common interstitial alloys, metal atoms are arranged in the form of face-centered cubic (FCC), hexagonal dense packing (HCP), and simple hexagonal (HEX), and non-metallic atoms enter the space between the metal atoms. The most common types of gaps between metal atoms are octahedrons and triangular prisms. The crystal structure of metal carbides depends on geometric and electronic factors. The geometric factor can be described by Hager's rule of thumb: when the atomic ratio of nonmetal to metal is below 0.59, simple crystal structures are formed. Interestingly, although metal carbides have simple crystal structures, few of these compounds have the same crystal structure as their parent metals. For example, molybdenum metal has a body-centered cubic structure, while its stable carbides have a hexagonal close-packed structure, and oxycarbides have a face-centered cubic structure. Another factor that determines the crystal structure of interstitial alloys is the electronic factor. The bonding in these compounds results from the cooperation between the sP orbitals of nonmetals and the SPD orbitals of metal atoms.

{xunruicms_img_title}{xunruicms_img_title}

Application of Molybdenum Carbide Mo2C Powder

Molybdenum carbide is a new functional material with high melting point, high hardness and excellent corrosion resistance. It has been widely used in various fields of high temperature, wear resistance and chemical corrosion. It has similar noble metal electronic structure and catalytic properties.

1. Because its electronic structure and catalytic properties are similar to those of noble metals, molybdenum carbide can be widely used as a catalyst for reactions involving hydrogen, such as alkane isomerization, unsaturated hydrocarbon hydrogenation, hydrodesulfurization, denitration, etc.;

2. Molybdenum carbide is an important part of molybdenum carbide hard coating and other cermet coatings, and can also be used alone as wear-resistant and wear-resistant coatings;

2. Molybdenum carbide is widely used in hydrogen-related reactions such as alkanes;

3. Molybdenum carbide can be used to produce chromium-free special alloys and engineering ceramics;

4. Molybdenum carbide is used as superhard tool material, wear-resistant material, heating element material, high temperature structural material;

5. Molybdenum carbide is used to produce wear-resistant films and semiconductor films;

6. Molybdenum carbide can be used to manufacture special alloys and engineering ceramics without chromium;

Molybdenum carbide Mo2C powder price

The price of molybdenum carbide Mo2C powder varies randomly with the production cost, transportation cost, international conditions, exchange rate, market supply and demand and other factors of molybdenum carbide Mo2C powder. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Molybdenum Carbide Mo2C Powder, please feel free to contact us for the latest price of Molybdenum Carbide Mo2C Powder.

Molybdenum carbide Mo2C powder suppliers

As a global supplier of molybdenum carbide Mo2C powders, Tanki New Materials Ltd. has extensive experience in advanced engineering material properties, applications and cost-effective manufacturing. The company has successfully developed a series of powder materials (including boron carbide, aluminum carbide, titanium carbide, etc.), high-purity targets, functional ceramics, structural devices, and provides OEM services.

Molybdenum Carbide Properties
Other Namesdimolybdenum carbide, Mo2C powder
CAS No.12069-89-5
Compound FormulaMo2C
Molecular Weight203.89
AppearanceGray Powder
Melting Point2690
Boiling PointN/A
Density9.18 g/cm3
Solubility in H2ON/A
Exact MassN/A
Molybdenum Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A



The latest poll by CSA for consumer finance company Cofidis shows the French are taking action to trim their budgets as inflation erodes household purchasing power.  

According to Le Figaro, the poll shows that French people think they need to earn an average of 490 euros more a month in order to live a decent life. This is an increase of 23 euros compared to the purchasing power barometer published in September 2021. Amid inflation and international tensions, this average in the polls masks differences among households, with some social groups much more severely affected by the decline in purchasing power than others. Seventy-eight percent of single-parent households, 76 percent of 25-to 34-year-olds, and 72 percent of blue-collar workers said the international situation had had a negative impact on their personal finances, compared with 64 percent of all French people.  

In response to rising prices, soaring energy, and food prices, in particular, the French government is preparing to launch a package of measures designed to increase the purchasing power, such as extending the energy price protection mechanism, the extension of the fuel discount measures, and more targeted alternative measures, will be distributed inflation-linked pension and social security benefits, check the "food" and so on.

Because of the soaring energy prices, the Molybdenum Carbide, Molybdenum Carbide Overview, Molybdenum Carbide Applications, Molybdenum Carbide Suppliers, Molybdenum Carbide Price price is predicted to rise in the future.

How is lithium 12-hydroxystearate produced?

The US President recently said the conflict between Russia and Ukraine had driven up the prices of all the world's major food staples, including wheat, corn, barley, oilseeds and edible oils, and that Russia and Ukraine together supplied more than 25% of the world's wheat exports and about 20% of its barley exports. 

To address the food shortage, the Biden administration says it plans to increase the number of counties eligible for insurance for double cropping. Double cropping is when farmers grow two different crops a year on the same field. 

Under Biden's plan, the number of counties eligible for two-season crop insurance would increase by 681, for a total of 1,935. 

The UN has warned that up to 1.7bn people are "highly exposed" to the domino effect of the conflict between Russia and Ukraine on the global food, energy, and financial systems.  The agency says conflict could increase hunger in countries where people are already suffering from malnutrition.

Even countries where food is less scarce are being hit by rising prices. U.S. grocery prices rose 1% in April, compared with a 10.8% increase over the past 12 months, the Labor Department said recently.

According to the White House, global food prices have risen nearly 13 percent since the outbreak of the Russia-Ukraine conflict. 

Besides, affected by the ever-changing international situation, the supply and prices of international bulk Lithium 12-Hydroxystearate Lithium,Application of lithium 12-hydroxystearate lithium grease,Lithium 12-Hydroxystearate Lithium Grease Supplier,Overview of Lithium 12-Hydroxystearate Lithium Grease,12-Hydroxy lithium stearate lithium base grease price are still very uncertain.

Overview of Lithium 12-Hydroxystearate Lithium Grease

Lithium greases are made from natural fatty acid (stearic acid or 12-hydroxystearic acid) lithium soaps, thickened medium viscosity mineral oils or synthetic oils, while synthetic lithium greases are made from synthetic fatty acid lithium soaps , Thickened medium-viscosity mineral oil.

How is lithium 12-hydroxystearate produced?

To produce lithium 12-hydroxystearate, lithium hydroxide and fatty acid are mixed in an aqueous medium. With vigorous stirring, dilute lithium hydroxide monohydrate was gradually added to the fatty acid dispersion in water heated to just below boiling point. Since these lithium soaps are difficult to filter, they are collected by spray drying. In terms of application, lithium 12-hydroxystearate is usually dispersed in synthetic oils such as silicone oil and ester oil. Synthetic oils are favored for their higher stability and performance at extreme temperatures.

 12-Hydroxystearic acid is produced by hydrogenation of castor oil. Dehydration and reduction of the hydroxyl group results in stearic acid after most of the primary reaction with double bond saturation. Hydrogenated castor oil produces a mixture of 12-hydroxystearic acid and stearic acid.

{xunruicms_img_title}

Application of lithium 12-hydroxystearate lithium grease

Lithium 12-hydroxystearate grease is widely used as lubricating oil, stabilizer, decolorizer and thickener. Lithium-based greases: especially those thickened with lithium 12-hydroxystearate soap. After adding antioxidants, rust inhibitors and extreme pressure agents, it becomes a multi-purpose grease. Alternative long-life general purpose greases calcium and sodium based greases are used for bearing lubrication of aircraft, automobiles, tanks, machine tools and various mechanical equipment.

Lithium 12-hydroxystearate is a fatty acid salt commonly known as "lithium soap" and is most commonly used to stabilize and thicken soap oils. Lithium is generally preferred over soaps containing other counter ions such as sodium, calcium and barium.

12-Hydroxy lithium stearate lithium base grease price

The price of lithium 12-hydroxystearate lithium-based grease will vary randomly with the production cost, transportation cost, international situation and market supply and demand of 12-hydroxy lithium-based lithium-based grease. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Lithium 12-Hydroxystearate Grease, please feel free to send an inquiry for the latest price Lithium 12-Hydroxystearate Lithium Grease.

Lithium 12-Hydroxystearate Lithium Grease Supplier

As a global supplier of lithium 12-hydroxystearate, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineered materials. The company has successfully developed a series of powder materials (molybdenum disulfide MoS2, tungsten disulfide WS2, boron nitride BN, boron nitride), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

Properties of Lithium 12-Hydroxystearate

Compound Formula

C18H35LiO3

CAS  No.

7620-77-1

EC No.

231-536-5

Molecular Weight

306.4

Melting Point

220℃

Exact Mass

306.27 g/mol

Solubility in H2O

Slightly soluble

Monoisotopic Mass

306.27 g/mol


Gas supplies have been in short supply because of the conflict between Russia and Ukraine.  Combined with the situation that other renewable sources cannot produce enough electricity, electricity prices have soared in many parts all over the world. For this reason, I assume the supply and prices of the Lithium 12-Hydroxystearate Lithium,Application of lithium 12-hydroxystearate lithium grease,Lithium 12-Hydroxystearate Lithium Grease Supplier,Overview of Lithium 12-Hydroxystearate Lithium Grease,12-Hydroxy lithium stearate lithium base grease price would keep being influenced by the high energy prices.

Product Properties of Chromium Oxide Cr2O3 Powder CAS 1308-38-9

Overview of Chromium Oxide Cr2O3 Powder

Chromium oxide is an inorganic substance. The chemical formula of chromium oxide is Cr2O3. It is a light green to dark green fine hexagonal crystal. It turns brown when it's hot and green when it's cold.

{xunruicms_img_title}

Cr2O3 is found in the chromium-rich tremolite skarn, postquartz, and chlorite veins in the form of the natural mineral escolite. Eskolaite is also a rare component of chondrites.

 Product Properties of Chromium Oxide Cr2O3 Powder

Cr2O3 has a corundum structure consisting of hexagonally arranged oxide anions, in which 2/3 of the octahedral pores are occupied by chromium. Similar to corundum, Cr2O3 is a hard and brittle material (Mohs hardness 8-8.5).

Chromium oxide dissolves in hot alkali metal bromate solution. Soluble in heated potassium bromate solution, slightly soluble in acid and alkali, almost insoluble in water, ethanol, acetone, acid and alkali. and annoying. It is extremely stable to light, atmosphere, high temperature and corrosive gases such as sulfur dioxide and hydrogen sulfide. It has high coverage.

 Application of Chromium Oxide Cr2O3 Powder

1. Lead chrome green is the main coloring pigment in the paint industry, and most green paints are formulated with this pigment. In addition, it is used in paints and plastics. Its application range is very similar to that of lead chrome yellow. Due to the presence of chrome yellow in the ingredients, attention should be paid to the toxicity of lead in its application. Lead chrome green contains iron blue and oxidant lead chromate, so when the dust encounters sparks, there is a possibility of spontaneous combustion, so be careful when drying and crushing. After burning, lead chrome green completely loses the characteristics of green pigment and turns into a dark brown-yellow substance. In addition, in the production of nitro paint, the rolling process is not directly rolled with lead chrome green,

2. Used in metallurgy, ceramics, chromium oxide refractories, pigment industrial raw materials and organic synthesis catalysts.

3. Used as analytical reagent and catalyst.

4. It is used as a coloring, wear-resistant and corrosion-resistant filler for adhesives and sealants. It can also be used as a colorant for enamel, ceramics, artificial leather and building materials, a catalyst for organic chemical synthesis, a lightfast coating and a special ink for printing money.

5. It is used as a colorant for cosmetics, mainly for eye cosmetics, but not for oral and lip cosmetics, and is not recommended for facial cosmetics and nail polish.

6. Chromium oxide is one of the main components of silver-plating bright liquid. The newly prepared chromium trioxide is an important raw material for the preparation of chromium fluoride and chromium bromide.

Chromium Oxide Cr2O3 Powder Price

The price of chromium oxide Cr2O3 powder will vary randomly with the production cost of chromium oxide Cr2O3 powder, transportation cost, international situation, exchange rate, market supply and demand and other factors. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, inexpensive nanomaterials and chemicals by providing turnkey custom manufacturing services. If you are looking for Chromium Oxide Cr2O3 Powder, please feel free to check the latest price of Chromium Oxide Cr2O3 Powder.

Chromium oxide Cr2O3 powder supplier

As a global supplier of Chromium Oxide Cr2O3 Powders, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and can provide OEM services.

Technical Parameter of Cr2O3 Powder CAS 1308-38-9 Chrome Oxide Green 

Product NameChrome Oxide GreenEINECS No.215-160-9CAS No.1308-38-9
Molecular FormulaCr2O3AppearanceBright green to dark green
StandardSR-GSR-DSR-M
Cr2O3>99%>99%>99%
Fe2O3≤0.2%≤0.2%≤0.2%
SiO2≤0.2%≤0.2%≤0.2%
Moisture≤0.2%≤0.2%≤0.2%
Water soluble≤0.3%≤0.3%≤0.3%
Sieve residue(45um)≤0.5%≤0.5%≤0.2%
D50 (um)1.2-22-80.5-1
Bulk density (g/cm3)0.6-0.81.2-1.50.4-0.65
Hexavalent chromiumMinimum up to 0-5ppm, or customize as requirement
Cr2O3 Powder CAS 1308-38-9 Chrome Oxide Green Properties
Other Nameschromium oxide, chrome oxide, green chrome oxide
CAS No.1308-38-9
Compound FormulaCr2O3
Molecular Weight151.99
AppearanceGreen Powder
Melting Point2266
Boiling Point4000
Density5.21 g/cm3
Solubility in H2ONo
Thermal ExpansionN/A
Cr2O3 Powder Chrome Oxide Green Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


Magnesium oxide product types

The secretary general of the Organization of Petroleum Exporting Countries (OPEC) said recently that US economic sanctions against Venezuela have affected global energy supplies. 

He told Venezuelan media that the ECONOMIC sanctions imposed by the United States on Venezuela and other countries have seriously affected the ability to produce and export oil worldwide and violated the right of people in other countries to use energy.

Venezuela has one of the largest proven crude oil reserves in the world, but U.S. sanctions have made it impossible for Venezuela’s oil industry to consistently export reliable energy to the world, he said. Despite this, he highly appreciated the efforts of the Venezuelan oil industry to maintain Magnesium Oxide, MgO Overview, Magnesium Oxide Application, MgO Suppliers, Magnesium Oxide Price are expected to increase in the future.

Magnesium oxide MgO overview

Magnesium oxide MgO is an alkaline oxide with the same properties as alkaline oxides. It is a gelling material, white or off-white powder, odorless, tasteless and non-toxic. It is a typical alkaline earth metal Oxide, with chemical formula MgO. Melting point 2852°C, boiling point 3600°C, density 3.58g/cm3 (25°C). Soluble in acid and ammonium salt solution, insoluble in alcohol. The solubility in water is 0.00062 g/100 mL (0 °C) and 0.0086 g/100 mL (30 °C). When exposed to the air, it is easy to absorb water and carbon dioxide and gradually become basic magnesium carbonate. Lightweight products are faster than heavier ones. It combines with water to generate magnesium hydroxide under certain conditions, which is slightly alkaline reaction. The pH of the saturated aqueous solution was 10.3. Soluble in acid and ammonium salt, insoluble in water, the solution is alkaline. Insoluble in ethanol. It has a strong refraction effect in the visible and near-ultraviolet light range. Magnesite (MgCO3), magnesium oxide. The seawater is treated with slaked lime to obtain magnesium hydroxide precipitation, and the magnesium hydroxide is burned to obtain magnesium oxide. It is also possible to use the magnesium chloride halide obtained from the comprehensive utilization of seawater or the brine after the bromine extraction as the raw material, and add sodium hydroxide or sodium carbonate. Magnesium hydroxide or basic magnesium carbonate is produced to precipitate and then burn to obtain magnesium oxide. my country mainly uses magnesite, dolomite, brine or brine as raw materials.

{xunruicms_img_title}

Magnesium oxide product types

Classification: divided into light magnesium oxide and heavy magnesium oxide. Lightweight and loose in volume, it is a white amorphous powder. Odorless, tasteless and non-toxic.

Industrial grade light burn

Application: Mainly used in the production of magnesite products. Light-burned magnesium oxide and magnesium chloride aqueous solution in a certain proportion can be gelatinized and hardened into a hardened body with certain physical and mechanical properties, which is called magnesite cement.

Advanced Lubricant Grade

Applications: Mainly used as cleaning agent, vanadium inhibitor and desulfurizer in advanced lubricating oil processing, greatly improving the density and rheology of lubricating film and reducing ash content. The removal of lead and mercury can reduce the pollution of lubricating oil or fuel waste to the environment. Surface-treated magnesium oxide can also be used as a complexing agent, chelating agent and carrier in the refining process, which is more conducive to product fractionation to improve product quality.

food grade

Application fields: used as food additives, color stabilizers, pH adjusters, as supplements of magnesium in health products and food.

medical grade

Application field: In the field of biopharmaceuticals, medical grade magnesium oxide can be used as antacid, adsorbent, desulfurizer, lead remover, complex filter aid, PH adjuster. In medicine, it can be used as antacid and laxative to inhibit and relieve Hyperacidity, treatment of gastric and duodenal ulcers. The neutralizing effect of gastric acid is strong, slow and long-lasting, and does not produce carbon dioxide.

Silicon steel grade

Application field: silicon steel grade magnesia has good magnetic permeability (that is, has a large positive magnetic susceptibility) and excellent insulating properties.

Advanced Electromagnetic Grade

Application fields: used for wireless high-frequency paramagnetic permeability materials, magnetic rod antennas, magnetic cores of frequency modulation components, etc. instead of ferrite. It can be used in the production of composite superconducting magnetic materials and also in the electronic magnetic industry. As "soft magnetic material". It is also an ideal raw material for industrial enamels and ceramics.

High Purity Magnesium Oxide

Application field: High-purity magnesium oxide has excellent alkali resistance and electrical insulation at high temperature. High coefficient of thermal expansion and thermal conductivity with good light transmittance. Widely used as high temperature heat resistant material. In the field of ceramics, it is used as a raw material for light-transmitting ceramic crucibles and substrates.

nanoscale

Application field: Nano-scale magnesium oxide has obvious small size effect, surface effect, quantum size effect and macroscopic tunnel effect. After modification, there is no agglomeration phenomenon, and it has many special functions in optics, catalysis, magnetism, mechanics, chemical industry, etc. And important application value, the prospect is very broad, is an important new material in the 21st century.

Application of Magnesium Oxide MgO

Magnesium oxide MgO is used to determine sulfur and pyrite in coal and sulfur and arsenic in steel. Used as a standard for white pigments. Light magnesia is mainly used as a raw material for the preparation of ceramics, enamels, refractory crucibles and refractory bricks. Also used as an activator for polishes, adhesives, coatings, paper fillers, accelerators neoprene and fluororubber. After mixing with solutions such as magnesium chloride, it can be made into an aqueous solution of magnesium oxide. It is medicinally used as an antacid and laxative for hyperacidity and duodenal ulcers. Used as a catalyst in the chemical industry and as a raw material for the manufacture of magnesium salts. Magnesium oxide MgO is also used in the manufacture of glass, dyeing powder, phenolic plastics, etc. Heavy magnesia is used in the rice milling industry for firing, grinding and semi-rolling. It is used in the construction industry to manufacture artificial chemical floors, artificial marble thermal insulation boards and sound insulation boards, and used as fillers in the plastics industry. It can also be used to produce other magnesium salts.

One of the main uses of magnesium oxide is as a flame retardant. Traditional flame retardant materials are widely used in flame retardant mixtures consisting of halogenated polymers or halogenated flame retardants. However, once a fire occurs, due to thermal decomposition and combustion, a large amount of smoke and toxic corrosive gases will be generated, which will hinder fire fighting and personnel evacuation, and corrode equipment and equipment. In particular, it has been found that more than 80% of fatalities in fires are caused by dense smoke and toxic gases from materials. Therefore, in addition to flame retardant efficiency, low smoke and low toxicity are also indispensable indicators of flame retardants. The development of my country's flame retardant industry is extremely unbalanced, and chlorinated flame retardants account for a large proportion, ranking first among flame retardants, among which chlorinated paraffin occupies a monopoly position. However, chlorine-based flame retardants will release toxic gases when they act, which is far from the non-toxic and efficient pursuit of modern life. Therefore, in order to comply with the development trend of low-smoke, low-toxicity, and pollution-free flame retardants in the world, it is essential to develop, produce and apply magnesium oxide flame retardants.

Magnesium oxide MgO price

The price of magnesium oxide MgO will change randomly according to factors such as magnesium oxide production cost, transportation cost, international situation, and magnesium oxide market supply and demand. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost products, nanomaterials and chemicals by providing a full range of customized services. If you are looking for Magnesium Oxide MgO, please feel free to send an inquiry to get the latest price of Magnesium Oxide MgO.

Suppliers of Magnesium Oxide MgO

As a global magnesia MgO supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (titanium oxide, silicon oxide, titanium oxide, etc.), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

More information about Magnesium oxide MgO powder
Magnesium Oxide MgO Properties (Theoretical)
Compound FormulaMgO
Molecular Weight40.3
AppearanceWhite Powder
Melting Point2,852° C (5,166° F)
Boiling Point3,600° C (6,512° F)
Density3.58 g/cm3
Solubility in H2ON/A
Exact Mass39.98
Monoisotopic Mass39.98
Magnesium Oxide MgO Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Precautionary StatementsN/A
Flash PointNot applicable
Risk CodesN/A
Safety StatementsN/A
RTECS NumberOM3850000
Transport InformationNONH
WGK Germany1


Greece will hand over Iranian oil it intercepted from a Russian-flagged tanker to the United States at the request of the U.S. Justice Department, Greek port police said recently, AFP reported. The decision angered Tehran.  

In April, Greek authorities reportedly seized a Russian oil tanker, the Pegas, which was said to be heading to the Turkish port of Marmara.  

Reports say the ship was docked in Calistos Bay with a crew of several people said to be Russian. The Greek coast guard said the ship had been renamed the Lana.  

The report notes that the European Union imposed sanctions on Russia after the conflict broke out in February. Greek authorities seized the tanker in accordance with European Union sanctions.  

According to information at the time, the tanker was carrying 115,000 tons of Iranian oil.  

Iran's Ports and Maritime Organization strongly protested Greece's decision, calling it an "international bandit." "The Islamic Republic of Iran will not give up its legitimate rights and expects the Greek government to abide by its international obligations in the area of navigation and shipping," it said in a statement on its website.  

Iran's Foreign Ministry, through the International Maritime Organization, called on the Greek government to release the tanker and its crew overnight, adding that "the Americans discharged their cargo," the report said.  

Athens did not immediately respond to the Iranian protest and gave no further details about the oil on board or how it was handed over to the United States, the report said.

The Magnesium Oxide, MgO Overview, Magnesium Oxide Application, MgO Suppliers, Magnesium Oxide Price price is expected to increase in the next few days affected by the change in supply and demand markets.

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. Problem of cement proportions: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the concrete surface evaporation is accelerated. This results in cracking on the surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Solution: Add an agent to prevent cracking. A variety of inorganic composite materials can prevent over 80% of foam concrete from cracking. Add 2-3 kilograms of anti-cracking material per cubic meter.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum sulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black solid. The layers of the crystal structure are made up of alternate arrangements of sulfur and Molybdenum. Molybdenum disulfide This material is a good choice for its chemical and thermal resistance. It can be easily reacted to acids or bases. It is widely used in lubricants as an additive and composite material. As a great lubricant molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. It is used widely in machinery, petrochemicals and automobile manufacture. Molybdenum diulfide, when used in harsh environments such as those with high temperatures, loads and speeds, can act as a lubricant, reduce friction, and prolong the life expectancy of equipment. Molybdenum diulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce pollutants. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in many fields. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, low friction coefficient, and good resistance to friction. It has a high lubrication capacity in high-temperature, high-load and high-speed environments. This is why it's widely used in the machinery industry, automobile manufacturing, and petrochemical industries. Molybdenum Disulfide Lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum disulfide, when combined with rubber, resins and other materials, can produce high-performance materials such as composite fibres or reinforced plastics. These composites offer excellent mechanical properties, corrosion resistance, and are widely used for automotives and aerospace.

Electronic Industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic parts with high semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, flotation, and electroplating. Synthesis is the most commonly used method for producing molybdenum.

The synthesis is a way to make nano MoS2 using a molybdenum, tungsten source. This method can produce sulfides of high purity with fewer impurities. This method can produce sulfides to meet a variety of functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

It is essential to prepare both a tungsten source or molybdenum, and a sulfur-based source during the raw material preparation phase. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfide. The purity, chemical properties, reaction conditions and other factors must be taken into consideration when selecting tungsten and molybdenum or sulfur sources.

In the chemical reactions stage, tungsten is Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. Specific conditions for the reaction include reaction temperature and time, as well as reaction atmosphere. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

In the stage of product separation and filtration, molybdenum isulfide has to be extracted using separation and filtration methods. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at lower temperatures. It can also prepare different molybdenum sulfide products, such as those with morphologies or particle sizes.

Flotation is the process of separating molybdenum diulfide by using organic agents and grinding tungsten, molybdenum or other sources with minerals like pyrite or Sphalerite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complex production process.

Electroplating is the process of electroplating molybdenum on a metal surface. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

It is important to select the best production method for the job based on the demand. It is also important to consider environmental protection and safety during the production process.

Prospect Market of Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in machinery, industry, electronics, aviation, and other fields. Demand for molybdenum diulfide has increased due to the continued development of global economies and the rapid development in high-tech areas. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performance lubricant used in a variety of fields, including machinery manufacturing and automobile manufacturing. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollutants, and help reduce air pollutant pollution. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as an additive that is environmentally friendly will continue to be promoted.

Molybdenum diulfide, when combined with other materials such as resins, fibres composites and rubber, can also be used to produce high-performance materials. These composites have excellent mechanical and corrosion-resistant properties and are widely used by the automotive, aerospace, electronic and other industries. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see an increased demand.

The molybdenum-disulfide compound can also be used in new energy fields such as solar panels and energy storage batteries. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

The price of disulfide molybdenum will also gradually decrease with the continual improvement of the process and the reduction of costs. This in turn will encourage further growth of market demand. In parallel, as environmental awareness increases and technological progress continues, new production technologies and processes will be introduced to molybdenum-disulfide. This will further promote the development of the molybdenum-disulfide market.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been a leading global chemical supplier & manufacturer for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powders, nitride particles, graphite particles, zinc sulfide particles, boron grains, etc.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It has high heat transfer properties, a high melting point and a high hardness. It's widely used by industries, the military and aerospace. This article will give a detailed description of the physical properties and chemical composition, as well as preparation methods, performance characteristics, and applications fields, for use in research and other fields.

Physical properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. It has a thermal conductivity of 97W/m*K. This is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in high-temperature, corrosive environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, the arc melting technique, and the chemical vapour deposit method.

Methode de réduction du carbothermal

The carbon thermal method is widely used to prepare boron carbide . The reaction equation is B2O3+3C - B4C+CO. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction formula is B2O3+3C + B4C. The reaction temperature ranges between 18002000 degrees. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C B4C+6H2. The reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term primarily includes chemical, physical and mechanical characteristics.

Physical property

Density, conductivity, thermal resistance, etc. are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical Property

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in environments with high temperatures and corrosion.

Mechanical property

Boron carbide's high hardness, melting point, and heat transmission make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience in the field, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email if you're looking for Boron Carbide to: sales1@rboschco.com

Newsyounamen is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsyounamen.